16 research outputs found

    Building nonparametric nn-body force fields using Gaussian process regression

    Full text link
    Constructing a classical potential suited to simulate a given atomic system is a remarkably difficult task. This chapter presents a framework under which this problem can be tackled, based on the Bayesian construction of nonparametric force fields of a given order using Gaussian process (GP) priors. The formalism of GP regression is first reviewed, particularly in relation to its application in learning local atomic energies and forces. For accurate regression it is fundamental to incorporate prior knowledge into the GP kernel function. To this end, this chapter details how properties of smoothness, invariance and interaction order of a force field can be encoded into corresponding kernel properties. A range of kernels is then proposed, possessing all the required properties and an adjustable parameter nn governing the interaction order modelled. The order nn best suited to describe a given system can be found automatically within the Bayesian framework by maximisation of the marginal likelihood. The procedure is first tested on a toy model of known interaction and later applied to two real materials described at the DFT level of accuracy. The models automatically selected for the two materials were found to be in agreement with physical intuition. More in general, it was found that lower order (simpler) models should be chosen when the data are not sufficient to resolve more complex interactions. Low nn GPs can be further sped up by orders of magnitude by constructing the corresponding tabulated force field, here named "MFF".Comment: 31 pages, 11 figures, book chapte

    Machine-learning of atomic-scale properties based on physical principles

    Full text link
    We briefly summarize the kernel regression approach, as used recently in materials modelling, to fitting functions, particularly potential energy surfaces, and highlight how the linear algebra framework can be used to both predict and train from linear functionals of the potential energy, such as the total energy and atomic forces. We then give a detailed account of the Smooth Overlap of Atomic Positions (SOAP) representation and kernel, showing how it arises from an abstract representation of smooth atomic densities, and how it is related to several popular density-based representations of atomic structure. We also discuss recent generalisations that allow fine control of correlations between different atomic species, prediction and fitting of tensorial properties, and also how to construct structural kernels---applicable to comparing entire molecules or periodic systems---that go beyond an additive combination of local environments

    First principles interatomic potential for tungsten based on Gaussian process regression

    No full text
    An accurate description of atomic interactions, such as that provided by first principles quantum mechanics, is fundamental to realistic prediction of the properties that govern plasticity, fracture or crack propagation in metals. However, the computational complexity associated with modern schemes explicitly based on quantum mechanics limits their applications to systems of a few hundreds of atoms at most. This thesis investigates the application of the Gaussian Approximation Potential (GAP) scheme to atomistic modelling of tungsten - a bcc transition metal which exhibits a brittle-to-ductile transition and whose plasticity behaviour is controlled by the properties of 12111\frac{1}{2} \langle 111 \rangle screw dislocations. We apply Gaussian process regression to interpolate the quantum-mechanical (QM) potential energy surface from a set of points in atomic configuration space. Our training data is based on QM information that is computed directly using density functional theory (DFT). To perform the fitting, we represent atomic environments using a set of rotationally, permutationally and reflection invariant parameters which act as the independent variables in our equations of non-parametric, non-linear regression. We develop a protocol for generating GAP models capable of describing lattice defects in metals by building a series of interatomic potentials for tungsten. We then demonstrate that a GAP potential based on a Smooth Overlap of Atomic Positions (SOAP) covariance function provides a description of the 12111\frac{1}{2} \langle 111 \rangle screw dislocation that is in agreement with the DFT model. We use this potential to simulate the mobility of 12111\frac{1}{2} \langle 111 \rangle screw dislocations by computing the Peierls barrier and model dislocation-vacancy interactions to QM accuracy in a system containing more than 100,000 atoms

    Accuracy and transferability of Gaussian approximation potential models for tungsten

    No full text
    We introduce interatomic potentials for tungsten in the bcc crystal phase and its defects within the Gaussian approximation potential framework, fitted to a database of first-principles density functional theory calculations. We investigate the performance of a sequence of models based on databases of increasing coverage in configuration space and showcase our strategy of choosing representative small unit cells to train models that predict properties observable only using thousands of atoms. The most comprehensive model is then used to calculate properties of the screw dislocation, including its structure, the Peierls barrier and the energetics of the vacancy-dislocation interaction. All software and raw data are available at www.libatoms.org

    Accuracy and transferability of GAP models for tungsten

    No full text
    We introduce interatomic potentials for tungsten in the bcc crystal phase and its defects within the Gaussian Approximation Potential (GAP) framework, fitted to a database of first principles density functional theory (DFT) calculations. We investigate the performance of a sequence of models based on databases of increasing coverage in configuration space and showcase our strategy of choosing representative small unit cells to train models that predict properties only observable using thousands of atoms. The most comprehensive model is then used to calculate properties of the screw dislocation, including its structure, the Peierls barrier and the energetics of the vacancy-dislocation interaction. All software and raw data are available at www.libatoms.org
    corecore